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p in q, denoted bȳpq, is the smallest closed proj of
her(q) dominatingp.

Let p, q ∈ OP(A) with p ≤ q. p is

i. dense inq if p̄q = q;

ii. abelianif her(p) is abelian;

iii. C∗-finite if r̄s = s wheneverr, s ∈ OP(her(p))
with r ≤ s andr ∼sp s.

A Murray-von Neumann type classification of C*-algebras – p.16



finite and abelian open projs
Let q ∈ OP(A), andp a proj inqA∗∗q. Theclosure of
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A C∗-algebraA is

• C∗-finite iff for each heredC∗-subalgB ⊆ A,
every heredC∗-subalg ofB which is spatially
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LetA be a general C*-algebra.

(a)A is of typeA iff ∃ abelian heredC∗-subalg ofA
generating an essential closed ideal ofA.
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(a) LetA andB be two strongly Morita equivalent
C∗-algs.

ThenA is of typeA (resp,B, C, or C*-smei-finite) iff
B is of the same type.
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Hereditability of types
LetA be of typeA (resp,B, C, orC∗-semi-finite).
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TypeA algebras
(a) Any type IC∗-algebra is of typeA.
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Type II and III algs
Following (Cuntz and Pedersen, ’79),x ∈ A+ is finite
if for any sequence{zk} in A with x =

∑∞
k=1

z∗kzk
andy =

∑∞
k=1

zkz
∗
k ≤ x, one hasy = x.
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TypeB andC∗-semi-finite algs
(a) Infinite dimC∗-finite simpleC∗-algs are of type
B.
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tracial state, thenA is of typeB.

(d) Every simpleAF alg, not of the formK(H), is of
typeB.

(e) If A is finite (resp, semi-finite, of type II), thenA
isC∗-finite (resp,C∗-semi-finite, of typeB).
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Type C algebras
(a) If A is of typeC, then it is of type III.
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Type C algebras
(a) If A is of typeC, then it is of type III.

(b) If A has real rank zero and is purely infinite, then
it is of typeC.
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Type C algebras
(a) If A is of typeC, then it is of type III.

(b) If A has real rank zero and is purely infinite, then
it is of typeC.

(c) If A is a separable purely infiniteC∗-alg with
stable rank one, thenA is of typeC.
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Type C algebras
(a) If A is of typeC, then it is of type III.

(b) If A has real rank zero and is purely infinite, then
it is of typeC.

(c) If A is a separable purely infiniteC∗-alg with
stable rank one, thenA is of typeC.

(d) Any purely infiniteC∗-algebraA is of type III.
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The case of W*-algs
LetM be a W*-algebra.

(a) A projp ∈M is finite iff it is C∗-finite.
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The case of W*-algs
LetM be a W*-algebra.

(a) A projp ∈M is finite iff it is C∗-finite.

(b)M is of typeA if and only ifM is a type I von
Neumann algebra.
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The case of W*-algs
LetM be a W*-algebra.

(a) A projp ∈M is finite iff it is C∗-finite.

(b)M is of typeA if and only ifM is a type I von
Neumann algebra.

(c)M is of typeB if and only ifM is a type II von
Neumann algebra.
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The case of W*-algs
LetM be a W*-algebra.

(a) A projp ∈M is finite iff it is C∗-finite.

(b)M is of typeA if and only ifM is a type I von
Neumann algebra.

(c)M is of typeB if and only ifM is a type II von
Neumann algebra.

(s)M is of typeC if and only ifM is a type III von
Neumann algebra.
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The case of W*-algs
LetM be a W*-algebra.

(a) A projp ∈M is finite iff it is C∗-finite.

(b)M is of typeA if and only ifM is a type I von
Neumann algebra.

(c)M is of typeB if and only ifM is a type II von
Neumann algebra.

(s)M is of typeC if and only ifM is a type III von
Neumann algebra.

(e)M isC∗-semi-finite if and only ifM is a
semi-finite von Neumann algebra.
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The case of W*-algs
LetM be a W*-algebra.

(a) A projp ∈M is finite iff it is C∗-finite.

(b)M is of typeA if and only ifM is a type I von
Neumann algebra.

(c)M is of typeB if and only ifM is a type II von
Neumann algebra.

(s)M is of typeC if and only ifM is a type III von
Neumann algebra.

(e)M isC∗-semi-finite if and only ifM is a
semi-finite von Neumann algebra.
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Type factorizations
LetA be aC∗-algebra.

(a)∃ a largest typeA (resp,B, C, andC∗-semi-finite)
heredC∗-subalgJA (resp,JB, JC, andJsf) of A,
which is also an ideal ofA.
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Type factorizations
LetA be aC∗-algebra.

(a)∃ a largest typeA (resp,B, C, andC∗-semi-finite)
heredC∗-subalgJA (resp,JB, JC, andJsf) of A,
which is also an ideal ofA.

(b) JA, JB andJC are mutually disjoint s.t.
JA + JB + JC is an essential closed ideal ofA.
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Type factorizations
LetA be aC∗-algebra.

(a)∃ a largest typeA (resp,B, C, andC∗-semi-finite)
heredC∗-subalgJA (resp,JB, JC, andJsf) of A,
which is also an ideal ofA.

(b) JA, JB andJC are mutually disjoint s.t.
JA + JB + JC is an essential closed ideal ofA.

If eA, eB, eC are central open projs inA∗∗ with
JA = her(eA), JB = her(eB) andJC = her(eC), then

1 = eA + eB
1
+ eC.
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Type factorizations
LetA be aC∗-algebra.

(a)∃ a largest typeA (resp,B, C, andC∗-semi-finite)
heredC∗-subalgJA (resp,JB, JC, andJsf) of A,
which is also an ideal ofA.

(b) JA, JB andJC are mutually disjoint s.t.
JA + JB + JC is an essential closed ideal ofA.

If eA, eB, eC are central open projs inA∗∗ with
JA = her(eA), JB = her(eB) andJC = her(eC), then

1 = eA + eB
1
+ eC.
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(c) JA + JB is an essential closed ideal ofJsf.

If esf is the central open proj ofA with Jsf = her(esf),
then

esf = eA
esf + eB.
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(c) JA + JB is an essential closed ideal ofJsf.

If esf is the central open proj ofA with Jsf = her(esf),
then

esf = eA
esf + eB.

(d)A/JA
C is C∗-semi-finite andA/(JA

A )
⊥ is of typeA.
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(c) JA + JB is an essential closed ideal ofJsf.

If esf is the central open proj ofA with Jsf = her(esf),
then

esf = eA
esf + eB.

(d)A/JA
C is C∗-semi-finite andA/(JA

A )
⊥ is of typeA.

(e) If A isC∗-semi-finite, thenA/JA
B is of typeA.
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(c) JA + JB is an essential closed ideal ofJsf.

If esf is the central open proj ofA with Jsf = her(esf),
then

esf = eA
esf + eB.

(d)A/JA
C is C∗-semi-finite andA/(JA

A )
⊥ is of typeA.

(e) If A isC∗-semi-finite, thenA/JA
B is of typeA.
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Papers of the speaker can be found at
http://www.math.nsysu.edu.tw/∼wong
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Papers of the speaker can be found at
http://www.math.nsysu.edu.tw/∼wong

Thank you!
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Papers of the speaker can be found at
http://www.math.nsysu.edu.tw/∼wong

Thank you!
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A Chinese dragon story
�����Ö:

“eï�.ß6yYÒÇ,©û���,ëO*W,�
PXàÍ»”�

A Murray-von Neumann type classification of C*-algebras – p.34



A Chinese dragon story
�����Ö:

“eï�.ß6yYÒÇ,©û���,ëO*W,�
PXàÍ»”�

Quoted fromZhuang-zi(a Chinese philosopher):

“A man Zhu learned the fine skill of killing dragons
from Master Chi. Has spent all his money, he became
a master in three years. However, he then found no
dragon at all in the world.”
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