A Murray-von Neumann type classification of C*-algebras

黃毅青 Ngai-Ching Wong

Department of Applied Mathematics National Sun Yat-sen University Taiwan

台灣 中山大學 應用數學系

Jointed with Chi-Keung NG 吳志强 (Nankai Univ.)

A Murray-von Neumann type classification of C^* -algebras – p. 1

A C*-algebra is a (complex) B-space A with multiplication and involution satisfying that

A C*-algebra is a (complex) B-space A with multiplication and involution satisfying that (1) $||ab|| \le ||a|| ||b||, \forall a, b \in A.$

A C*-algebra is a (complex) B-space A with multiplication and involution satisfying that (1) $||ab|| \le ||a|| ||b||, \forall a, b \in A.$ (2) $||a^*a|| = ||a||^2, \forall a \in A.$

A C*-algebra is a (complex) B-space A with multiplication and involution satisfying that (1) $||ab|| \le ||a|| ||b||, \forall a, b \in A.$ (2) $||a^*a|| = ||a||^2, \forall a \in A.$

A W*-algebra is a C*-alg M with a predual M_* .

A C*-algebra is a (complex) B-space A with multiplication and involution satisfying that (1) $||ab|| \le ||a|| ||b||, \forall a, b \in A.$ (2) $||a^*a|| = ||a||^2, \forall a \in A.$

A W*-algebra is a C*-alg M with a predual M_* .

Gelfand-Naimark-Segal Theorem.

(a) Every abelian C*-alg $A \cong C_0(X)$ (W*-alg $M \cong C(\Omega)$) for some loc cpt Hausdorff X (hyperstonian Ω).

A C*-algebra is a (complex) B-space A with multiplication and involution satisfying that (1) $||ab|| \le ||a|| ||b||, \forall a, b \in A.$ (2) $||a^*a|| = ||a||^2, \forall a \in A.$

A W*-algebra is a C*-alg M with a predual M_* .

Gelfand-Naimark-Segal Theorem.

(a) Every abelian C*-alg $A \cong C_0(X)$ (W*-alg $M \cong C(\Omega)$) for some loc cpt Hausdorff X (hyperstonian Ω).

(b) Every C*-alg A (Every W*-alg M) $\hookrightarrow B(H)$ as a norm (weak*) closed *-subalg for some H-space H.

A C*-algebra is a (complex) B-space A with multiplication and involution satisfying that (1) $||ab|| \le ||a|| ||b||, \forall a, b \in A.$ (2) $||a^*a|| = ||a||^2, \forall a \in A.$

A W*-algebra is a C*-alg M with a predual M_* .

Gelfand-Naimark-Segal Theorem.

(a) Every abelian C*-alg $A \cong C_0(X)$ (W*-alg $M \cong C(\Omega)$) for some loc cpt Hausdorff X (hyperstonian Ω).

(b) Every C*-alg A (Every W*-alg M) $\hookrightarrow B(H)$ as a norm (weak*) closed *-subalg for some H-space H.

Classifications of W*-algebras

Muarry-von Nuemann classification scheme:

Classifications of W*-algebras

Muarry-von Nuemann classification scheme:

p is a projection in a W*-algebra M if $p = p^2 = p^*$.

Classifications of W*-algebras

Muarry-von Nuemann classification scheme:

p is a projection in a W*-algebra M if $p = p^2 = p^*$.

A subprojection $q \leq p$ if qp = q.

Classifications of W*-algebras Muarry-von Nuemann classification scheme:

p is a projection in a W*-algebra M if $p = p^2 = p^*$.

A subprojection $q \leq p$ if qp = q.

u in M is a partial isometry if both u^*u, uu^* are projections.

Classifications of W*-algebras Muarry-von Nuemann classification scheme:

p is a projection in a W*-algebra M if $p = p^2 = p^*$.

A subprojection $q \leq p$ if qp = q.

u in M is a partial isometry if both u^*u, uu^* are projections.

Two projection p, q are equivalent, written $p \sim q$, if there is a partial isometry u in M such that

$$p = uu^* \quad q = u^*u.$$

Classifications of W*-algebras Muarry-von Nuemann classification scheme:

p is a projection in a W*-algebra M if $p = p^2 = p^*$.

A subprojection $q \leq p$ if qp = q.

u in M is a partial isometry if both u^*u, uu^* are projections.

Two projection p, q are equivalent, written $p \sim q$, if there is a partial isometry u in M such that

$$p = uu^* \quad q = u^*u.$$

abelian if pMp is abelian;

abelian if pMp is abelian; finite if $q \le p$ with $q \sim p \implies q = p$;

abelian if pMp is abelian; finite if $q \le p$ with $q \sim p \implies q = p$; infinite if p is not finite;

abelian if pMp is abelian;
finite if q ≤ p with q ~ p ⇒ q = p;
infinite if p is not finite;
purely infinite if p contains no nonzero finite subproj.

abelian if pMp is abelian;
finite if q ≤ p with q ~ p ⇒ q = p;
infinite if p is not finite;
purely infinite if p contains no nonzero finite subproj.

Clearly, abelian projections are finite.

abelian if pMp is abelian;
finite if q ≤ p with q ~ p ⇒ q = p;
infinite if p is not finite;
purely infinite if p contains no nonzero finite subproj.

Clearly, abelian projections are finite.

• $z_{\text{fin}} = \sup\{ \text{ finite central proj in } M \},$

• $z_{\text{fin}} = \sup\{ \text{ finite central proj in } M \},$

Call M

• finite or properly infinite if $z_{\text{fin}} = 1$ or 0.

- $z_{\text{fin}} = \sup\{ \text{ finite central proj in } M \},$
- $z_3 = \sup\{ \text{ purely infinite central proj in } M \}.$

Call M

• finite or properly infinite if $z_{\text{fin}} = 1$ or 0.

- $z_{\text{fin}} = \sup\{ \text{ finite central proj in } M \},$
- $z_3 = \sup\{ \text{ purely infinite central proj in } M \}.$

Call M

- finite or properly infinite if $z_{\text{fin}} = 1$ or 0.
- purely infinite or semi-finite if $z_3 = 1$ or 0.

A W*-algebra M is

Type I if every nonzero central proj. contains a nonzero abelian subproj.;

A W*-algebra M is

Type I if every nonzero central proj. contains a nonzero abelian subproj.;

Type II if every nonzero central proj. contains a nonzero finite subproj., but no nonzero abelian subproj.;

A W*-algebra M is

Type I if every nonzero central proj. contains a nonzero abelian subproj.;

Type II if every nonzero central proj. contains a nonzero finite subproj., but no nonzero abelian subproj.;

Type III if M is purely infinite, or $z_3 = 1$, i.e., there is no nonzero finite proj. in M.

A W*-algebra M is

Type I if every nonzero central proj. contains a nonzero abelian subproj.;

Type II if every nonzero central proj. contains a nonzero finite subproj., but no nonzero abelian subproj.;

Type III if M is purely infinite, or $z_3 = 1$, i.e., there is no nonzero finite proj. in M.

 $M = M_{11} \oplus M_{1\infty} \oplus M_{21} \oplus M_{2\infty} \oplus M_3,$

 $M = M_{11} \oplus M_{1\infty} \oplus M_{21} \oplus M_{2\infty} \oplus M_3,$ where

 M_{11} is finite Type I, $M_{1\infty}$ is properly infinite Type I,

 $M = M_{11} \oplus M_{1\infty} \oplus M_{21} \oplus M_{2\infty} \oplus M_3,$ where

 M_{11} is finite Type I, $M_{1\infty}$ is properly infinite Type I, M_{21} is finite Type II, $M_{2\infty}$ is properly infinite Type II,

 $M = M_{11} \oplus M_{1\infty} \oplus M_{21} \oplus M_{2\infty} \oplus M_3,$

where

 M_{11} is finite Type I, $M_{1\infty}$ is properly infinite Type I, M_{21} is finite Type II, $M_{2\infty}$ is properly infinite Type II, and M_3 is purely infinite.

 $M = M_{11} \oplus M_{1\infty} \oplus M_{21} \oplus M_{2\infty} \oplus M_3,$ where

 M_{11} is finite Type I, $M_{1\infty}$ is properly infinite Type I, M_{21} is finite Type II, $M_{2\infty}$ is properly infinite Type II, and M_3 is purely infinite.

In this talk, we shall develop in parallel a type classification of C^* -algebras.

 $M = M_{11} \oplus M_{1\infty} \oplus M_{21} \oplus M_{2\infty} \oplus M_3,$ where

 M_{11} is finite Type I, $M_{1\infty}$ is properly infinite Type I, M_{21} is finite Type II, $M_{2\infty}$ is properly infinite Type II, and M_3 is purely infinite.

In this talk, we shall develop in parallel a type classification of C^* -algebras.

The main difficulty is that a C*-algebra A can have no nonzero projection at all.

 $M = M_{11} \oplus M_{1\infty} \oplus M_{21} \oplus M_{2\infty} \oplus M_3,$ where

 M_{11} is finite Type I, $M_{1\infty}$ is properly infinite Type I, M_{21} is finite Type II, $M_{2\infty}$ is properly infinite Type II, and M_3 is purely infinite.

In this talk, we shall develop in parallel a type classification of C^* -algebras.

The main difficulty is that a C*-algebra A can have no nonzero projection at all.

Resolve: Use "open projections".
Type decomposition of a W*-alg

 $M = M_{11} \oplus M_{1\infty} \oplus M_{21} \oplus M_{2\infty} \oplus M_3,$ where

 M_{11} is finite Type I, $M_{1\infty}$ is properly infinite Type I, M_{21} is finite Type II, $M_{2\infty}$ is properly infinite Type II, and M_3 is purely infinite.

In this talk, we shall develop in parallel a type classification of C^* -algebras.

The main difficulty is that a C*-algebra A can have no nonzero projection at all.

Resolve: Use "open projections".

Let A be a C*-alg with bidual W*-alg A^{**} .

Let A be a C*-alg with bidual W*-alg A^{**} .

A proj. $p \in A^{**}$ is an open proj. of A (Akemann '69) if $\exists a_{\lambda} \in A_{+}$ with $a_{\lambda} \uparrow p$ in $\sigma(A^{**}, A^{*})$ -top.

Let A be a C*-alg with bidual W*-alg A^{**} .

A proj. $p \in A^{**}$ is an open proj. of A (Akemann '69) if $\exists a_{\lambda} \in A_{+}$ with $a_{\lambda} \uparrow p$ in $\sigma(A^{**}, A^{*})$ -top.

When $A = C_0(X)$ is abelian, open proj. of A are exactly characteristic functions χ_U of open subsets Uof the spectrum X of A.

Let A be a C*-alg with bidual W*-alg A^{**} .

A proj. $p \in A^{**}$ is an open proj. of A (Akemann '69) if $\exists a_{\lambda} \in A_{+}$ with $a_{\lambda} \uparrow p$ in $\sigma(A^{**}, A^{*})$ -top.

When $A = C_0(X)$ is abelian, open proj. of A are exactly characteristic functions χ_U of open subsets U of the spectrum X of A.

In general, open projections p \longleftrightarrow hereditary C^* -subalgs $her(p) := pA^{**}p \cap A$ of A.

Let A be a C*-alg with bidual W*-alg A^{**} .

A proj. $p \in A^{**}$ is an open proj. of A (Akemann '69) if $\exists a_{\lambda} \in A_{+}$ with $a_{\lambda} \uparrow p$ in $\sigma(A^{**}, A^{*})$ -top.

When $A = C_0(X)$ is abelian, open proj. of A are exactly characteristic functions χ_U of open subsets U of the spectrum X of A.

In general, open projections p \longleftrightarrow hereditary C^* -subalgs $her(p) := pA^{**}p \cap A$ of A.

Moreover, central open projections $z \leftrightarrow$ closed ideals $her(z) = zA^{**} \cap A$.

Let A be a C*-alg with bidual W*-alg A^{**} .

A proj. $p \in A^{**}$ is an open proj. of A (Akemann '69) if $\exists a_{\lambda} \in A_{+}$ with $a_{\lambda} \uparrow p$ in $\sigma(A^{**}, A^{*})$ -top.

When $A = C_0(X)$ is abelian, open proj. of A are exactly characteristic functions χ_U of open subsets U of the spectrum X of A.

In general, open projections p \longleftrightarrow hereditary C^* -subalgs $her(p) := pA^{**}p \cap A$ of A.

Moreover, central open projections $z \leftrightarrow$ closed ideals $her(z) = zA^{**} \cap A$.

Denote by OP(A) the family of all open projs $p \in A^{**}$ of a C*-alg. A.

Denote by OP(A) the family of all open projs $p \in A^{**}$ of a C*-alg. A.

Proposition. Suppose that A and B are C^* -algs.

Denote by OP(A) the family of all open projs $p \in A^{**}$ of a C*-alg. A.

Proposition. Suppose that A and B are C^* -algs.

1. If
$$\Phi : A^{**} \to B^{**}$$
 is a *-isom s.t.
 $\Phi(OP(A)) = OP(B)$, then $\Phi(A) = B$.

Denote by OP(A) the family of all open projs $p \in A^{**}$ of a C*-alg. A.

Proposition. Suppose that A and B are C^* -algs.

1. If
$$\Phi : A^{**} \to B^{**}$$
 is a *-isom s.t.
 $\Phi(OP(A)) = OP(B)$, then $\Phi(A) = B$.

2. If *B* is a hereditary C*-subalg. of *A*, then $OP(B) = OP(A) \cap B^{**}$.

Denote by OP(A) the family of all open projs $p \in A^{**}$ of a C*-alg. A.

Proposition. Suppose that A and B are C^* -algs.

1. If
$$\Phi : A^{**} \to B^{**}$$
 is a *-isom s.t.
 $\Phi(OP(A)) = OP(B)$, then $\Phi(A) = B$.

2. If *B* is a hereditary C*-subalg. of *A*, then $OP(B) = OP(A) \cap B^{**}$.

We now consider a suitable equivalence relation on OP(A).

We now consider a suitable equivalence relation on OP(A).

A naive choice is to use the original "Murray-von Neumann equivalence" \sim_{Mv} .

We now consider a suitable equivalence relation on OP(A).

A naive choice is to use the original "Murray-von Neumann equivalence" \sim_{Mv} .

However, this choice is not good because (H. Lin '90) tell us that two open projs

 $p \sim_{\mathbf{Mv}} q \quad \Rightarrow \quad \operatorname{her}(p) \cong \operatorname{her}(q) \text{ as } \mathbf{C^*}\text{-algs.}$

We now consider a suitable equivalence relation on OP(A).

A naive choice is to use the original "Murray-von Neumann equivalence" \sim_{Mv} .

However, this choice is not good because (H. Lin '90) tell us that two open projs

 $p \sim_{\mathbf{Mv}} q \quad \Rightarrow \quad \operatorname{her}(p) \cong \operatorname{her}(q) \text{ as } \mathbf{C^*}\text{-algs.}$

On the other hand, one might define two open projs $p \sim_{her} q$ whenever $her(p) \cong her(q)$.

On the other hand, one might define two open projs $p \sim_{\text{her}} q$ whenever $\operatorname{her}(p) \cong \operatorname{her}(q)$.

The problem of this choice is that two distinct open projs $\chi_U \neq \chi_V$ of C([0, 1]) can be equivalent (if U, Vare homeomorphic open subsets of [0, 1]). On the other hand, one might define two open projs $p \sim_{\text{her}} q$ whenever $\operatorname{her}(p) \cong \operatorname{her}(q)$.

The problem of this choice is that two distinct open projs $\chi_U \neq \chi_V$ of C([0, 1]) can be equivalent (if U, Vare homeomorphic open subsets of [0, 1]).

This means that the resulting classification, even if possible, will be very different from the Murray-von Neumann classification.

On the other hand, one might define two open projs $p \sim_{\text{her}} q$ whenever $\operatorname{her}(p) \cong \operatorname{her}(q)$.

The problem of this choice is that two distinct open projs $\chi_U \neq \chi_V$ of C([0, 1]) can be equivalent (if U, Vare homeomorphic open subsets of [0, 1]).

This means that the resulting classification, even if possible, will be very different from the Murray-von Neumann classification.

 $v^* \operatorname{her}_A(p)v = \operatorname{her}_A(q)$ and $v \operatorname{her}_A(q)v^* = \operatorname{her}_A(p)$.

 $v^* \operatorname{her}_A(p)v = \operatorname{her}_A(q)$ and $v \operatorname{her}_A(q)v^* = \operatorname{her}_A(p)$.

Note that this relation is precisely the "hereditarily stable version" of the Murray-von Neumann equiv,

 $v^* \operatorname{her}_A(p)v = \operatorname{her}_A(q)$ and $v \operatorname{her}_A(q)v^* = \operatorname{her}_A(p)$.

Note that this relation is precisely the "hereditarily stable version" of the Murray-von Neumann equiv, and it is stronger than both \sim_{Mv} and \sim_{her} .

 $v^* \operatorname{her}_A(p)v = \operatorname{her}_A(q)$ and $v \operatorname{her}_A(q)v^* = \operatorname{her}_A(p)$.

Note that this relation is precisely the "hereditarily stable version" of the Murray-von Neumann equiv, and it is stronger than both \sim_{Mv} and \sim_{her} .

If M is a W*-alg and p, q are proj. in M, then

 $p \sim_{\mathrm{sp}} q \quad \Leftrightarrow \quad p \sim_{\mathrm{Mv}} q.$

 $v^* \operatorname{her}_A(p)v = \operatorname{her}_A(q)$ and $v \operatorname{her}_A(q)v^* = \operatorname{her}_A(p)$.

Note that this relation is precisely the "hereditarily stable version" of the Murray-von Neumann equiv, and it is stronger than both \sim_{Mv} and \sim_{her} .

If M is a W*-alg and p, q are proj. in M, then

 $p \sim_{\mathrm{sp}} q \quad \Leftrightarrow \quad p \sim_{\mathrm{Mv}} q.$

 $p \sim_{PZ} q$ if there is a partial isometry $v \in A^{**}$ such that $p = vv^*, q = v^*v, v^* \operatorname{her}_A(p) \subseteq A$ and $v \operatorname{her}_A(q) \subseteq A$.

 $p \sim_{PZ} q$ if there is a partial isometry $v \in A^{**}$ such that $p = vv^*, q = v^*v, v^* her_A(p) \subseteq A$ and $v her_A(q) \subseteq A$.

It is not difficult to see that \sim_{PZ} is stronger than \sim_{sp} .

 $p \sim_{PZ} q$ if there is a partial isometry $v \in A^{**}$ such that $p = vv^*, q = v^*v, v^* her_A(p) \subseteq A$ and $v her_A(q) \subseteq A$. It is not difficult to see that \sim_{PZ} is stronger than \sim_{sp} .

However, we decide to use \sim_{sp} as it seems to be more natural in the way of using open projections.

 $p \sim_{PZ} q$ if there is a partial isometry $v \in A^{**}$ such that $p = vv^*, q = v^*v, v^* her_A(p) \subseteq A$ and $v her_A(q) \subseteq A$. It is not difficult to see that \sim_{PZ} is stronger than \sim_{sp} .

However, we decide to use \sim_{sp} as it seems to be more natural in the way of using open projections.

Let $p, q \in OP(A)$. TFAE.

1. $p = vv^*$, $q = v^*v$, $v^* her_A(p)v = her_A(q)$, and $v her_A(q)v^* = her_A(p)$ for a partial isom $v \in A^{**}$.

Let $p, q \in OP(A)$. TFAE.

1. $p = vv^*$, $q = v^*v$, $v^* her_A(p)v = her_A(q)$, and $v her_A(q)v^* = her_A(p)$ for a partial isom $v \in A^{**}$.

2. $her(q) = u^* her(p)u$ and $her(p) = u her(q)u^*$ for a partial isom $u \in A^{**}$.

- 1. $p = vv^*$, $q = v^*v$, $v^* her_A(p)v = her_A(q)$, and $v her_A(q)v^* = her_A(p)$ for a partial isom $v \in A^{**}$.
- 2. $her(q) = u^* her(p)u$ and $her(p) = u her(q)u^*$ for a partial isom $u \in A^{**}$.
- 3. $her(q) \subseteq u^* her(p)u$ and $her(p) \subseteq u her(q)u^*$ for a partial isom $u \in A^{**}$.

- 1. $p = vv^*$, $q = v^*v$, $v^* her_A(p)v = her_A(q)$, and $v her_A(q)v^* = her_A(p)$ for a partial isom $v \in A^{**}$.
- 2. $her(q) = u^* her(p)u$ and $her(p) = u her(q)u^*$ for a partial isom $u \in A^{**}$.
- 3. $her(q) \subseteq u^* her(p)u$ and $her(p) \subseteq u her(q)u^*$ for a partial isom $u \in A^{**}$.
- 4. $q \le v^* v$ and $v \operatorname{her}(q) v^* = \operatorname{her}(p)$ for a partial isom $v \in A^{**}$.

- 1. $p = vv^*$, $q = v^*v$, $v^* her_A(p)v = her_A(q)$, and $v her_A(q)v^* = her_A(p)$ for a partial isom $v \in A^{**}$.
- 2. $her(q) = u^* her(p)u$ and $her(p) = u her(q)u^*$ for a partial isom $u \in A^{**}$.
- 3. $her(q) \subseteq u^* her(p)u$ and $her(p) \subseteq u her(q)u^*$ for a partial isom $u \in A^{**}$.
- 4. $q \le v^* v$ and $v \operatorname{her}(q) v^* = \operatorname{her}(p)$ for a partial isom $v \in A^{**}$.
- 5. \exists a partial isom $w \in A^{**}$ s.t. $p = ww^*$ and $\{w^*rw : r \in OP(A); r \leq p\} = \{s \in OP(A) : s \leq q\}$
Proposition

Let $p, q \in OP(A)$. TFAE.

- 1. $p = vv^*$, $q = v^*v$, $v^* her_A(p)v = her_A(q)$, and $v her_A(q)v^* = her_A(p)$ for a partial isom $v \in A^{**}$.
- 2. $her(q) = u^* her(p)u$ and $her(p) = u her(q)u^*$ for a partial isom $u \in A^{**}$.
- 3. $her(q) \subseteq u^* her(p)u$ and $her(p) \subseteq u her(q)u^*$ for a partial isom $u \in A^{**}$.
- 4. $q \le v^* v$ and $v \operatorname{her}(q) v^* = \operatorname{her}(p)$ for a partial isom $v \in A^{**}$.
- 5. \exists a partial isom $w \in A^{**}$ s.t. $p = ww^*$ and $\{w^*rw : r \in OP(A); r \leq p\} = \{s \in OP(A) : s \leq q\}$

A difficulty

One might attempt to define

 $p \leq_{\text{sp}} q$ if there is $q_1 \in OP(A)$ with $p \sim_{\text{sp}} q_1 \leq q$.

A difficulty

One might attempt to define $p \leq_{sp} q$ if there is $q_1 \in OP(A)$ with $p \sim_{sp} q_1 \leq q$.

However, unlike the Murray-von Neumann equivalence situation,

 $p \lesssim_{\mathrm{sp}} q \text{ and } q \lesssim_{\mathrm{sp}} p \quad \not\Rightarrow \quad p \sim_{\mathrm{sp}} q.$

A difficulty

One might attempt to define $p \leq_{sp} q$ if there is $q_1 \in OP(A)$ with $p \sim_{sp} q_1 \leq q$.

However, unlike the Murray-von Neumann equivalence situation,

 $p \lesssim_{\mathrm{sp}} q \text{ and } q \lesssim_{\mathrm{sp}} p \quad \not\Rightarrow \quad p \sim_{\mathrm{sp}} q.$

Let $q \in OP(A)$, and p a proj in $qA^{**}q$. The *closure of* p in q, denoted by \overline{p}^q , is the smallest closed proj of her(q) dominating p.

Let $q \in OP(A)$, and p a proj in $qA^{**}q$. The *closure of* p in q, denoted by \overline{p}^q , is the smallest closed proj of her(q) dominating p.

Let $p, q \in OP(A)$ with $p \leq q$. p is

Let $q \in OP(A)$, and p a proj in $qA^{**}q$. The *closure of* p in q, denoted by \overline{p}^q , is the smallest closed proj of her(q) dominating p.

Let $p, q \in OP(A)$ with $p \leq q$. p is

i. *dense in* q if $\bar{p}^q = q$;

Let $q \in OP(A)$, and p a proj in $qA^{**}q$. The *closure of* p in q, denoted by \overline{p}^q , is the smallest closed proj of her(q) dominating p.

Let $p, q \in OP(A)$ with $p \leq q$. p is

i. *dense in* q if $\bar{p}^q = q$;

ii. *abelian* if her(p) is abelian;

Let $q \in OP(A)$, and p a proj in $qA^{**}q$. The *closure of* p in q, denoted by \overline{p}^q , is the smallest closed proj of her(q) dominating p.

Let $p, q \in OP(A)$ with $p \leq q$. p is

- i. dense in q if $\bar{p}^q = q$;
- ii. *abelian* if her(p) is abelian;
- iii. C^* -finite if $\bar{r}^s = s$ whenever $r, s \in OP(her(p))$ with $r \leq s$ and $r \sim_{sp} s$.

Let $q \in OP(A)$, and p a proj in $qA^{**}q$. The *closure of* p in q, denoted by \overline{p}^q , is the smallest closed proj of her(q) dominating p.

Let $p, q \in OP(A)$ with $p \leq q$. p is

- i. dense in q if $\bar{p}^q = q$;
- ii. *abelian* if her(p) is abelian;

iii. C^* -finite if $\bar{r}^s = s$ whenever $r, s \in OP(her(p))$ with $r \leq s$ and $r \sim_{sp} s$.

If p is dense in q, then her(p) is essential in her(q).

Let $q \in OP(A)$, and p a proj in $qA^{**}q$. The *closure of* p in q, denoted by \overline{p}^q , is the smallest closed proj of her(q) dominating p.

Let $p, q \in OP(A)$ with $p \leq q$. p is

- i. dense in q if $\bar{p}^q = q$;
- ii. *abelian* if her(p) is abelian;

iii. C^* -finite if $\bar{r}^s = s$ whenever $r, s \in OP(her(p))$ with $r \leq s$ and $r \sim_{sp} s$.

If p is dense in q, then her(p) is essential in her(q).

(a) Suppose that p is abelian. If $r, s \in OP(her(p))$ satisfying $r \leq s$ and $r \sim_{sp} s$, then r = s. Thus, p is C^* -finite.

(a) Suppose that p is abelian. If $r, s \in OP(her(p))$ satisfying $r \leq s$ and $r \sim_{sp} s$, then r = s. Thus, p is C^* -finite.

(b) If her(p) is finite dimensional, then p is C^* -finite.

(a) Suppose that p is abelian. If $r, s \in OP(her(p))$ satisfying $r \leq s$ and $r \sim_{sp} s$, then r = s. Thus, p is C^* -finite.

(b) If her(p) is finite dimensional, then p is C^* -finite.

(c) One might ask why not define C^* -finiteness of p as: for any open subproj $r \leq p$ with $r \sim_{sp} p$, one has $\bar{r}^p = p$.

(a) Suppose that p is abelian. If $r, s \in OP(her(p))$ satisfying $r \leq s$ and $r \sim_{sp} s$, then r = s. Thus, p is C^* -finite.

(b) If her(p) is finite dimensional, then p is C^* -finite.

(c) One might ask why not define C^* -finiteness of p as: for any open subproj $r \leq p$ with $r \sim_{sp} p$, one has $\bar{r}^p = p$.

The reason is that the stronger condition above ensures open subprojs of a C^* -finite proj being C^* -finite.

(a) Suppose that p is abelian. If $r, s \in OP(her(p))$ satisfying $r \leq s$ and $r \sim_{sp} s$, then r = s. Thus, p is C^* -finite.

(b) If her(p) is finite dimensional, then p is C^* -finite.

(c) One might ask why not define C^* -finiteness of p as: for any open subproj $r \leq p$ with $r \sim_{sp} p$, one has $\bar{r}^p = p$.

The reason is that the stronger condition above ensures open subprojs of a C^* -finite proj being C^* -finite. Such a phenomena is automatic for W*-algs.

(a) Suppose that p is abelian. If $r, s \in OP(her(p))$ satisfying $r \leq s$ and $r \sim_{sp} s$, then r = s. Thus, p is C^* -finite.

(b) If her(p) is finite dimensional, then p is C^* -finite.

(c) One might ask why not define C^* -finiteness of p as: for any open subproj $r \leq p$ with $r \sim_{sp} p$, one has $\bar{r}^p = p$.

The reason is that the stronger condition above ensures open subprojs of a C^* -finite proj being C^* -finite. Such a phenomena is automatic for W*-algs.

A C^* -alg A is said to be:

i. *C**-*finite* if 1 is C*-finite;

- i. *C**-*finite* if 1 is C*-finite;
- ii. *C**-*semi-finite* if every nonzero open proj dominates a nonzero C*-finite open proj;

- i. *C**-*finite* if 1 is C*-finite;
- ii. *C**-*semi-finite* if every nonzero open proj dominates a nonzero C*-finite open proj;
- iii. *of Type* A if every nonzero central open proj dominates a nonzero abelian open proj;

- i. *C***-finite* if 1 is C*-finite;
- ii. *C**-*semi-finite* if every nonzero open proj dominates a nonzero C*-finite open proj;
- iii. *of Type* A if every nonzero central open proj dominates a nonzero abelian open proj;
- iv. *of Type* B if every nonzero central open proj dominates a nonzero C*-finite open projection, but no nonzero abelian open proj;

- i. *C**-*finite* if 1 is C*-finite;
- ii. *C**-*semi-finite* if every nonzero open proj dominates a nonzero C*-finite open proj;
- iii. *of Type* A if every nonzero central open proj dominates a nonzero abelian open proj;
- iv. of Type \mathfrak{B} if every nonzero central open proj dominates a nonzero C*-finite open projection, but no nonzero abelian open proj;
- v. *of Type* C if there is no nonzero C*-finite open projections.

- i. *C**-*finite* if 1 is C*-finite;
- ii. *C**-*semi-finite* if every nonzero open proj dominates a nonzero C*-finite open proj;
- iii. *of Type* A if every nonzero central open proj dominates a nonzero abelian open proj;
- iv. of Type \mathfrak{B} if every nonzero central open proj dominates a nonzero C*-finite open projection, but no nonzero abelian open proj;
- v. *of Type* C if there is no nonzero C*-finite open projections.

A C^* -algebra A is

A C^* -algebra A is

 C*-finite iff for each hered C*-subalg B ⊆ A, every hered C*-subalg of B which is spatially isomorphic to B, is essential in B;

A C^* -algebra A is

 C*-finite iff for each hered C*-subalg B ⊆ A, every hered C*-subalg of B which is spatially isomorphic to B, is essential in B;

 C*-semi-finite iff every non-zero hered C*-subalg of A contains a non-zero C*-finite hered C*-subalg; • of type \mathfrak{A} iff every non-zero closed ideal of A contains a non-zero abelian hered C^* -subalg;

- of type \mathfrak{A} iff every non-zero closed ideal of A contains a non-zero abelian hered C^* -subalg;
- of type B iff A does not contain any non-zero abelian hered C*-subalg and every non-zero closed ideal of A contains a non-zero C*-finite hered C*-subalg;

- of type \mathfrak{A} iff every non-zero closed ideal of A contains a non-zero abelian hered C^* -subalg;
- of type B iff A does not contain any non-zero abelian hered C*-subalg and every non-zero closed ideal of A contains a non-zero C*-finite hered C*-subalg;
- of type \mathfrak{C} iff A does not contain any non-zero C^* -finite hered C^* -subalg.

- of type \mathfrak{A} iff every non-zero closed ideal of A contains a non-zero abelian hered C^* -subalg;
- of type B iff A does not contain any non-zero abelian hered C*-subalg and every non-zero closed ideal of A contains a non-zero C*-finite hered C*-subalg;
- of type \mathfrak{C} iff A does not contain any non-zero C^* -finite hered C^* -subalg.

Let A be a general C*-algebra.

(a) A is of type \mathfrak{A} iff \exists abelian hered C^* -subalg of A generating an essential closed ideal of A.

Let A be a general C*-algebra.

(a) A is of type \mathfrak{A} iff \exists abelian hered C*-subalg of A generating an essential closed ideal of A.

(b) A is C^* -semi-finite iff $\exists C^*$ -finite hered C^* -subalg of A generating an essential closed ideal of A.

Let A be a general C*-algebra.

(a) A is of type \mathfrak{A} iff \exists abelian hered C*-subalg of A generating an essential closed ideal of A.

(b) A is C^* -semi-finite iff $\exists C^*$ -finite hered C^* -subalg of A generating an essential closed ideal of A.
(a) A is either of type \mathfrak{A} , type \mathfrak{B} or type \mathfrak{C} .

(a) A is either of type \mathfrak{A} , type \mathfrak{B} or type \mathfrak{C} .

(b) A is of type \mathfrak{A} if and only if A is of type I.

A Murray-von Neumann type classification of C*-algebras – p. 22

(a) A is either of type \mathfrak{A} , type \mathfrak{B} or type \mathfrak{C} .

(b) A is of type \mathfrak{A} if and only if A is of type I.

(c) If A is of type II in the sense of (Cuntz and Pedersen '79), then A is of type \mathfrak{B} .

(a) A is either of type \mathfrak{A} , type \mathfrak{B} or type \mathfrak{C} .

(b) A is of type \mathfrak{A} if and only if A is of type I.

(c) If A is of type II in the sense of (Cuntz and Pedersen '79), then A is of type \mathfrak{B} .

(d) If A is purely infinite in the sense of (Cuntz '81), then A is of type \mathfrak{C} .

(a) A is either of type \mathfrak{A} , type \mathfrak{B} or type \mathfrak{C} .

(b) A is of type \mathfrak{A} if and only if A is of type I.

(c) If A is of type II in the sense of (Cuntz and Pedersen '79), then A is of type \mathfrak{B} .

(d) If A is purely infinite in the sense of (Cuntz '81), then A is of type \mathfrak{C} .

(a) A is of type \mathfrak{A} iff every nonzero proj in A dominates a nonzero abelian proj in A.

(a) A is of type \mathfrak{A} iff every nonzero proj in A dominates a nonzero abelian proj in A.

(b) A is of type \mathfrak{B} iff every nonzero proj in A is non-abelian but dominates a nonzero C^* -finite proj in A.

(a) A is of type \mathfrak{A} iff every nonzero proj in A dominates a nonzero abelian proj in A.

(b) A is of type \mathfrak{B} iff every nonzero proj in A is non-abelian but dominates a nonzero C^* -finite proj in A.

(c) A is of type \mathfrak{C} iff A does not contain any non-zero C^* -finite proj.

(a) A is of type \mathfrak{A} iff every nonzero proj in A dominates a nonzero abelian proj in A.

(b) A is of type \mathfrak{B} iff every nonzero proj in A is non-abelian but dominates a nonzero C^* -finite proj in A.

(c) A is of type \mathfrak{C} iff A does not contain any non-zero C^* -finite proj.

(d) A is C^* -semi-finite iff every nonzero proj in A dominates a nonzero C^* -finite proj in A.

(a) A is of type \mathfrak{A} iff every nonzero proj in A dominates a nonzero abelian proj in A.

(b) A is of type \mathfrak{B} iff every nonzero proj in A is non-abelian but dominates a nonzero C^* -finite proj in A.

(c) A is of type \mathfrak{C} iff A does not contain any non-zero C^* -finite proj.

(d) A is C^* -semi-finite iff every nonzero proj in A dominates a nonzero C^* -finite proj in A.

Then A is of type \mathfrak{A} (resp, \mathfrak{B} , \mathfrak{C} , or C*-smei-finite) iff B is of the same type.

Then A is of type \mathfrak{A} (resp, \mathfrak{B} , \mathfrak{C} , or C*-smei-finite) iff B is of the same type.

(b) A is C^* -semi-finite iff any non-zero closed ideal of A contains a nonzero C^* -finite hered C^* -subalg.

Then A is of type \mathfrak{A} (resp, \mathfrak{B} , \mathfrak{C} , or C*-smei-finite) iff B is of the same type.

(b) A is C^* -semi-finite iff any non-zero closed ideal of A contains a nonzero C^* -finite hered C^* -subalg.

(c) A is of type \mathfrak{A} iff it is discrete, i.e., any non-zero open proj of A dominates a non-zero abelian open proj.

Then A is of type \mathfrak{A} (resp, \mathfrak{B} , \mathfrak{C} , or C*-smei-finite) iff B is of the same type.

(b) A is C^* -semi-finite iff any non-zero closed ideal of A contains a nonzero C^* -finite hered C^* -subalg.

(c) A is of type \mathfrak{A} iff it is discrete, i.e.,

any non-zero open proj of A dominates a non-zero abelian open proj.

(d) A is of type \mathfrak{B} iff it is anti-liminary and C^* -semi-finite.

Then A is of type \mathfrak{A} (resp, \mathfrak{B} , \mathfrak{C} , or C*-smei-finite) iff B is of the same type.

(b) A is C^* -semi-finite iff any non-zero closed ideal of A contains a nonzero C^* -finite hered C^* -subalg.

(c) A is of type \mathfrak{A} iff it is discrete, i.e.,

any non-zero open proj of A dominates a non-zero abelian open proj.

(d) A is of type \mathfrak{B} iff it is anti-liminary and C^* -semi-finite.

Let A be of type \mathfrak{A} (resp, \mathfrak{B} , \mathfrak{C} , or C^* -semi-finite).

Let A be of type \mathfrak{A} (resp, \mathfrak{B} , \mathfrak{C} , or C^* -semi-finite).

(a) If B is a hered C^* -subalg of A, then B is of type \mathfrak{A} (resp, \mathfrak{B} , \mathfrak{C} , or C^* -semi-finite).

Let A be of type \mathfrak{A} (resp, \mathfrak{B} , \mathfrak{C} , or C^* -semi-finite).

(a) If B is a hered C^* -subalg of A, then B is of type \mathfrak{A} (resp, \mathfrak{B} , \mathfrak{C} , or C^* -semi-finite).

(b) If A is a hered C^* -subalg of D, the closed ideal $I \subseteq D$ generated by A is of type \mathfrak{A} (resp, \mathfrak{B} , \mathfrak{C} , or C^* -semi-finite).

Let A be of type \mathfrak{A} (resp, \mathfrak{B} , \mathfrak{C} , or C^* -semi-finite).

(a) If B is a hered C^* -subalg of A, then B is of type \mathfrak{A} (resp, \mathfrak{B} , \mathfrak{C} , or C^* -semi-finite).

(b) If A is a hered C^* -subalg of D, the closed ideal $I \subseteq D$ generated by A is of type \mathfrak{A} (resp, \mathfrak{B} , \mathfrak{C} , or C^* -semi-finite).

(c) Suppose $1 \notin A$. Then the unitalization \tilde{A} is of type \mathfrak{A} (resp, \mathfrak{B} , \mathfrak{C} , or C^* -semi-finite). The same is true for the multiplier alg M(A).

Let A be of type \mathfrak{A} (resp, \mathfrak{B} , \mathfrak{C} , or C^* -semi-finite).

(a) If B is a hered C^* -subalg of A, then B is of type \mathfrak{A} (resp, \mathfrak{B} , \mathfrak{C} , or C^* -semi-finite).

(b) If A is a hered C^* -subalg of D, the closed ideal $I \subseteq D$ generated by A is of type \mathfrak{A} (resp, \mathfrak{B} , \mathfrak{C} , or C^* -semi-finite).

(c) Suppose $1 \notin A$. Then the unitalization \tilde{A} is of type \mathfrak{A} (resp, \mathfrak{B} , \mathfrak{C} , or C^* -semi-finite). The same is true for the multiplier alg M(A).

(a) Any type I C^* -algebra is of type \mathfrak{A} .

(a) Any type I C^* -algebra is of type \mathfrak{A} .

(b) A is of type I iff every primitive quotient of A is of type \mathfrak{A} .

(a) Any type I C^* -algebra is of type \mathfrak{A} .

(b) A is of type I iff every primitive quotient of A is of type \mathfrak{A} .

(c) If A is of type \mathfrak{A} and contains no essential primitive ideal, then A is of type I.

(a) Any type I C^* -algebra is of type \mathfrak{A} .

(b) A is of type I iff every primitive quotient of A is of type \mathfrak{A} .

(c) If A is of type \mathfrak{A} and contains no essential primitive ideal, then A is of type I.

(d) If A is a simple C^* -alg of type \mathfrak{A} , then $A = \mathcal{K}(H)$ for some Hilbert space H. If, in addition, A is C^* -finite, then $A = M_n$ for some positive integer n.

(a) Any type I C^* -algebra is of type \mathfrak{A} .

(b) A is of type I iff every primitive quotient of A is of type \mathfrak{A} .

(c) If A is of type \mathfrak{A} and contains no essential primitive ideal, then A is of type I.

(d) If A is a simple C^* -alg of type \mathfrak{A} , then $A = \mathcal{K}(H)$ for some Hilbert space H. If, in addition, A is C^* -finite, then $A = M_n$ for some positive integer n.

Following (Cuntz and Pedersen, '79), $x \in A_+$ is finite if for any sequence $\{z_k\}$ in A with $x = \sum_{k=1}^{\infty} z_k^* z_k$ and $y = \sum_{k=1}^{\infty} z_k z_k^* \leq x$, one has y = x.

Following (Cuntz and Pedersen, '79), $x \in A_+$ is finite if for any sequence $\{z_k\}$ in A with $x = \sum_{k=1}^{\infty} z_k^* z_k$ and $y = \sum_{k=1}^{\infty} z_k z_k^* \leq x$, one has y = x.

A is *finite* (resp, *semi-finite*) if every nonzero $x \in A_+$ is finite (resp, x dominates a non-zero finite element).

Following (Cuntz and Pedersen, '79), $x \in A_+$ is finite if for any sequence $\{z_k\}$ in A with $x = \sum_{k=1}^{\infty} z_k^* z_k$ and $y = \sum_{k=1}^{\infty} z_k z_k^* \leq x$, one has y = x.

A is *finite* (resp, *semi-finite*) if every nonzero $x \in A_+$ is finite (resp, x dominates a non-zero finite element).

Furthermore, A is of type II if it is anti-liminary and finite,

Following (Cuntz and Pedersen, '79), $x \in A_+$ is finite if for any sequence $\{z_k\}$ in A with $x = \sum_{k=1}^{\infty} z_k^* z_k$ and $y = \sum_{k=1}^{\infty} z_k z_k^* \leq x$, one has y = x.

A is *finite* (resp, *semi-finite*) if every nonzero $x \in A_+$ is finite (resp, x dominates a non-zero finite element).

Furthermore, A is of type II if it is anti-liminary and finite,

while A is of *type III* if it has no non-zero finite element.

Following (Cuntz and Pedersen, '79), $x \in A_+$ is finite if for any sequence $\{z_k\}$ in A with $x = \sum_{k=1}^{\infty} z_k^* z_k$ and $y = \sum_{k=1}^{\infty} z_k z_k^* \leq x$, one has y = x.

A is *finite* (resp, *semi-finite*) if every nonzero $x \in A_+$ is finite (resp, x dominates a non-zero finite element).

Furthermore, A is of type II if it is anti-liminary and finite,

while A is of *type III* if it has no non-zero finite element.

(a) Infinite dim C^* -finite simple C^* -algs are of type \mathfrak{B} .

(a) Infinite dim C^* -finite simple C^* -algs are of type \mathfrak{B} .

(b) If tracial states on A separates points of A_+ , then A is C^* -finite.

(a) Infinite dim C^* -finite simple C^* -algs are of type \mathfrak{B} .

(b) If tracial states on A separates points of A_+ , then A is C^* -finite.

(c) If A is an infinite dim simple C^* -alg with a faithful tracial state, then A is of type \mathfrak{B} .

(a) Infinite dim C^* -finite simple C^* -algs are of type \mathfrak{B} .

(b) If tracial states on A separates points of A_+ , then A is C^* -finite.

(c) If A is an infinite dim simple C^* -alg with a faithful tracial state, then A is of type \mathfrak{B} .

(d) Every simple AF alg, not of the form $\mathcal{K}(H)$, is of type \mathfrak{B} .
Type \mathfrak{B} and C^* -semi-finite algs

(a) Infinite dim C^* -finite simple C^* -algs are of type \mathfrak{B} .

(b) If tracial states on A separates points of A_+ , then A is C^* -finite.

(c) If A is an infinite dim simple C^* -alg with a faithful tracial state, then A is of type \mathfrak{B} .

(d) Every simple AF alg, not of the form $\mathcal{K}(H)$, is of type \mathfrak{B} .

(e) If A is finite (resp, semi-finite, of type II), then A is C^* -finite (resp, C^* -semi-finite, of type \mathfrak{B}).

(a) If A is of type \mathfrak{C} , then it is of type III.

(a) If A is of type \mathfrak{C} , then it is of type III.

(b) If A has real rank zero and is purely infinite, then it is of type \mathfrak{C} .

(a) If A is of type \mathfrak{C} , then it is of type III.

- (b) If A has real rank zero and is purely infinite, then it is of type \mathfrak{C} .
- (c) If A is a separable purely infinite C^* -alg with stable rank one, then A is of type \mathfrak{C} .

(a) If A is of type \mathfrak{C} , then it is of type III.

- (b) If A has real rank zero and is purely infinite, then it is of type \mathfrak{C} .
- (c) If A is a separable purely infinite C^* -alg with stable rank one, then A is of type \mathfrak{C} .
- (d) Any purely infinite C^* -algebra A is of type III.

Let M be a W*-algebra.

(a) A proj $p \in M$ is finite iff it is C^* -finite.

Let M be a W*-algebra.

(a) A proj $p \in M$ is finite iff it is C^* -finite.

(b) M is of type \mathfrak{A} if and only if M is a type I von Neumann algebra.

Let M be a W*-algebra.

- (a) A proj $p \in M$ is finite iff it is C^* -finite.
- (b) M is of type \mathfrak{A} if and only if M is a type I von Neumann algebra.
- (c) M is of type \mathfrak{B} if and only if M is a type II von Neumann algebra.

Let M be a W*-algebra.

- (a) A proj $p \in M$ is finite iff it is C^* -finite.
- (b) M is of type \mathfrak{A} if and only if M is a type I von Neumann algebra.
- (c) M is of type \mathfrak{B} if and only if M is a type II von Neumann algebra.
- (s) M is of type \mathfrak{C} if and only if M is a type III von Neumann algebra.

Let M be a W*-algebra.

(a) A proj $p \in M$ is finite iff it is C^* -finite.

(b) M is of type \mathfrak{A} if and only if M is a type I von Neumann algebra.

(c) M is of type \mathfrak{B} if and only if M is a type II von Neumann algebra.

(s) M is of type \mathfrak{C} if and only if M is a type III von Neumann algebra.

(e) M is C^* -semi-finite if and only if M is a semi-finite von Neumann algebra.

Let M be a W*-algebra.

(a) A proj $p \in M$ is finite iff it is C^* -finite.

(b) M is of type \mathfrak{A} if and only if M is a type I von Neumann algebra.

(c) M is of type \mathfrak{B} if and only if M is a type II von Neumann algebra.

(s) M is of type \mathfrak{C} if and only if M is a type III von Neumann algebra.

(e) M is C^* -semi-finite if and only if M is a semi-finite von Neumann algebra.

Let A be a C^* -algebra.

(a) \exists a largest type \mathfrak{A} (resp, \mathfrak{B} , \mathfrak{C} , and C^* -semi-finite) hered C^* -subalg $J_{\mathfrak{A}}$ (resp, $J_{\mathfrak{B}}$, $J_{\mathfrak{C}}$, and $J_{\mathfrak{sf}}$) of A, which is also an ideal of A.

Let A be a C^* -algebra.

(a) \exists a largest type \mathfrak{A} (resp, \mathfrak{B} , \mathfrak{C} , and C^* -semi-finite) hered C^* -subalg $J_{\mathfrak{A}}$ (resp, $J_{\mathfrak{B}}$, $J_{\mathfrak{C}}$, and $J_{\mathfrak{sf}}$) of A, which is also an ideal of A.

Let A be a C^* -algebra.

(a) \exists a largest type \mathfrak{A} (resp, \mathfrak{B} , \mathfrak{C} , and C^* -semi-finite) hered C^* -subalg $J_{\mathfrak{A}}$ (resp, $J_{\mathfrak{B}}$, $J_{\mathfrak{C}}$, and $J_{\mathfrak{sf}}$) of A, which is also an ideal of A.

(b) $J_{\mathfrak{A}}$, $J_{\mathfrak{B}}$ and $J_{\mathfrak{C}}$ are mutually disjoint s.t. $J_{\mathfrak{A}} + J_{\mathfrak{B}} + J_{\mathfrak{C}}$ is an essential closed ideal of A.

Let A be a C^* -algebra.

(a) \exists a largest type \mathfrak{A} (resp, \mathfrak{B} , \mathfrak{C} , and C^* -semi-finite) hered C^* -subalg $J_{\mathfrak{A}}$ (resp, $J_{\mathfrak{B}}$, $J_{\mathfrak{C}}$, and $J_{\mathfrak{sf}}$) of A, which is also an ideal of A.

(b) $J_{\mathfrak{A}}$, $J_{\mathfrak{B}}$ and $J_{\mathfrak{C}}$ are mutually disjoint s.t. $J_{\mathfrak{A}} + J_{\mathfrak{B}} + J_{\mathfrak{C}}$ is an essential closed ideal of A.

If $e_{\mathfrak{A}}, e_{\mathfrak{B}}, e_{\mathfrak{C}}$ are central open projs in A^{**} with $J_{\mathfrak{A}} = her(e_{\mathfrak{A}}), J_{\mathfrak{B}} = her(e_{\mathfrak{B}})$ and $J_{\mathfrak{C}} = her(e_{\mathfrak{C}})$, then

$$1 = \overline{e_{\mathfrak{A}} + e_{\mathfrak{B}}}^{\mathrm{I}} + e_{\mathfrak{C}}.$$

Let A be a C^* -algebra.

(a) \exists a largest type \mathfrak{A} (resp, \mathfrak{B} , \mathfrak{C} , and C^* -semi-finite) hered C^* -subalg $J_{\mathfrak{A}}$ (resp, $J_{\mathfrak{B}}$, $J_{\mathfrak{C}}$, and $J_{\mathfrak{sf}}$) of A, which is also an ideal of A.

(b) $J_{\mathfrak{A}}$, $J_{\mathfrak{B}}$ and $J_{\mathfrak{C}}$ are mutually disjoint s.t. $J_{\mathfrak{A}} + J_{\mathfrak{B}} + J_{\mathfrak{C}}$ is an essential closed ideal of A.

If $e_{\mathfrak{A}}, e_{\mathfrak{B}}, e_{\mathfrak{C}}$ are central open projs in A^{**} with $J_{\mathfrak{A}} = her(e_{\mathfrak{A}}), J_{\mathfrak{B}} = her(e_{\mathfrak{B}})$ and $J_{\mathfrak{C}} = her(e_{\mathfrak{C}})$, then

$$1 = \overline{e_{\mathfrak{A}} + e_{\mathfrak{B}}}^{\mathrm{I}} + e_{\mathfrak{C}}.$$

$$e_{\mathfrak{sf}} = \overline{e_{\mathfrak{A}}}^{e_{\mathfrak{sf}}} + e_{\mathfrak{B}}.$$

$$e_{\mathfrak{sf}} = \overline{e_{\mathfrak{A}}}^{e_{\mathfrak{sf}}} + e_{\mathfrak{B}}.$$

(d) $A/J_{\mathfrak{C}}^A$ is C^* -semi-finite and $A/(J_{\mathfrak{A}}^A)^{\perp}$ is of type \mathfrak{A} .

$$e_{\mathfrak{sf}} = \overline{e_{\mathfrak{A}}}^{e_{\mathfrak{sf}}} + e_{\mathfrak{B}}.$$

(d) A/J^A_𝔅 is C*-semi-finite and A/(J^A_𝔅)[⊥] is of type 𝔅.
(e) If A is C*-semi-finite, then A/J^A_𝔅 is of type 𝔅.

$$e_{\mathfrak{sf}} = \overline{e_{\mathfrak{A}}}^{e_{\mathfrak{sf}}} + e_{\mathfrak{B}}.$$

(d) A/J^A_𝔅 is C*-semi-finite and A/(J^A_𝔅)[⊥] is of type 𝔅.
(e) If A is C*-semi-finite, then A/J^A_𝔅 is of type 𝔅.

A Murray-von Neumann type classification of C*-algebras – p. 33

Papers of the speaker can be found at http://www.math.nsysu.edu.tw/~wong Papers of the speaker can be found at http://www.math.nsysu.edu.tw/~wong

Thank you!

A Murray-von Neumann type classification of C*-algebras – p. 33

Papers of the speaker can be found at http://www.math.nsysu.edu.tw/~wong

Thank you!

A Murray-von Neumann type classification of C*-algebras – p. 33

A Chinese dragon story

莊子・列禦寇: "<u>朱泙漫</u>學屠龍於<u>支離益</u>, 殫千金之家, 三年技成, 而 無所用其巧"。

A Chinese dragon story

莊子・列禦寇: "<u>朱泙漫</u>學屠龍於<u>支離益</u>, 殫千金之家, 三年技成, 而 無所用其巧"。

Quoted from Zhuang-zi (a Chinese philosopher): "A man Zhu learned the fine skill of killing dragons from Master Chi. Has spent all his money, he became a master in three years. However, he then found no dragon at all in the world."

A Chinese dragon story

莊子・列禦寇: "<u>朱泙漫</u>學屠龍於<u>支離益</u>, 殫千金之家, 三年技成, 而 無所用其巧"。

Quoted from Zhuang-zi (a Chinese philosopher): "A man Zhu learned the fine skill of killing dragons from Master Chi. Has spent all his money, he became a master in three years. However, he then found no dragon at all in the world."